SYNTHESIS AND ${ }^{1}$ H NMR COMPLEXATION STUDY OF A NOVEL MACROCYCLIC POLYETHER CONTAINING 1,1'-BIAZULENE UNIT

Der-Seang Lee, Paw-Wang Yang*, Tadayoshi Morita, ${ }^{\dagger}$ and Tetsuo Nozoe* $\dagger \dagger$
Department of Chemistry, National Taiwan University, Taipei, Taiwan, R. O. C., 'tDepartment of Chemistry, Tohoku University, Aoba-ku, Sendai 980-77, Japant and ${ }^{\dagger \dagger}$ Tokyo Research Raboratories, Kao Cooporation, 2-1-3, Bunka, Sumida-ku, Tokyo 131, Japan.

Abstract

A new class of chiral macrocyclic polyethers containing $1,1^{\prime}$-biazulene unit was prepared from the reaction of 2,2 -dihydroxy-3,3'-bis(methoxycarbonyl)-1,1'-biazulene with tetra- or pentaethyleneglycol ditosylate by a high dilution technique. Complexation study with alkali metals by ${ }^{1} \mathrm{H} \mathbf{n m r}$ indicated ion selectivity for these macrocycles. The crystal structure was studied by X-ray diffraction.

Synthetic macrocyclic molecules have been used in a variety of fields. lad One of the interesting area is the recognition behavior between hosts and guests. There has been much work in designing macrocyclic hosts which are able to recognize specific guests. Our interests have been focused on macrocylic polyethers containig azulene units because of its unique chromophore and rigid structure. Analogy to the binaphthyl system biazulenyl macrocycles are expected to be chiral. In this paper, we report their synthesis, selective ion complexation, and X-ray crystallography.
Tetra- (2a) and pentaethyleneglycol ethers (2b) of 2,2'-dihydroxy-3,3'-bis(methoxycarbonyl)-1,1'biazulene (1) were synthesized according to Scheme 1 .

Typical synthetic procedure involves a high dilution technique: A solution prepared from equivalent molar of 1^{2} and 1 mM of polyethylene glycol di-p-tosylate in 12 ml of DMF was added at $90^{\circ} \mathrm{C}$ under argon to a stirred solution of 3 molar equivalences of cesium carbonate in 3 ml of DMF 3 by using a syringe pump with flow system for $12 \mathrm{~h} .4^{4}$ The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for another 12 h and cooled to room temperature before it was filtrated. The filtrate was diluted with water and extracted with chloroform. The combined extract was washed with water and dried over anhydrous sodium sulfate. The solvent was removed in vacuo, and the oily residue was purified by column chromatography (silica gel, methanol/chloroform $=2 / 98 \mathrm{v} / \mathrm{v}$) to give $\mathbf{2 a}$ and $\mathbf{2 b}$, in 25 and 30% yields, respectively. The structures of $\mathbf{1 , 2 a}$, and $\mathbf{2 b}$ were determined on the basis of their spectral data (ir, nmr , and ms). ${ }^{2,5}$
It has been reported that 2,2'-dimethoxy-1,1'-biazulene is comformationally unstable and racemerized rapidly at room temperature. ${ }^{6}$ However, $2 a$ and $2 b$ are expected to be essentially chiral molecules because the $\mathrm{Cl}-\mathrm{Cl}$ ' bond is unable to rotate freely from molecular modelling study. In fact, the protons of α-methylene in their ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra showed complicated splitting pattern. Namely, two hydrogens on α-carbon showed a $d d d$ splitting pattern at $\delta 4.36$ and 3.85 ppm for 2 a and 4.33 and 3.85 ppm for $\mathbf{2 b}$, respectively. The other methylene protons also showed a multiplet splitting pattern. The complicated splitting pattern resuited from its low symmetry and rigid structure. On the other hand, their ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra showed three sharp peaks for $\mathbf{2 a}$ (four peaks for $\mathbf{2 b}$) at $c a . \delta 70 \mathrm{ppm}$ in the polyether region. These data indicate that there is an axis of symmetry $\left(\mathrm{C}_{2}\right)$ through the $\mathrm{Cl}-\mathrm{Cl}$ ' bond. In order to get better understanding of the conformational behavior, molecular modelling was performed using an insight 11 program. ${ }^{7}$ Computer modelling study showed that the ring current of azulene ring A^{\prime} made $\alpha \mathrm{H}-1$ so much more downfield shift than $\alpha \mathrm{H}-2$ in ${ }^{1} \mathrm{H} n \mathrm{~nm}$. Salt complexations were studied by ${ }^{1} \mathrm{H}$ nmr spectra in CDCl_{3}. To a solution of host dissolving in CDCl_{3} (ca. $10^{-4} \mathrm{M}$) different alkali salt ($\mathrm{LiCl}, \mathrm{NaSCN}, \mathrm{KSCN}, \mathrm{RbBr}$, or Csl) was added in excess.

Figure 1. ${ }^{1} \mathrm{H} \mathrm{Nmr}$ spectra of $\mathbf{2} \mathbf{b}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ with various alkali salts ($\mathrm{LiCl}, \mathrm{NaSCN}, \mathrm{KSCN}, \mathrm{RbBr}, \mathrm{Csl}$).

After the mixture was shaken for $5-10 \mathrm{~min},{ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum was taken. The results are shown in Figure 1 and Table 1. An obvious change of the nmr spectra observed for $\mathbf{2 b}$ with NaSCN or KSCN. The presence of the potassium or sodium salt induced spectral changes for not only the polyether ring but also the zulene ring and the methoxy group. It is interesting that $\mathbf{2 a}$ has smaller cavity than $\mathbf{2 b}$, but the change of the spectra after adding NaCSN is not as remarkable as $\mathbf{2 b}$. It is worth noting that the cavity size is not the only reason for salt complexation; the ability of preorganization of host should play an important role in this case. The induced change in the chemical shift by a specific cation suggests that there is a special selectivity for each host molecule (for alkali salts: $\mathbf{2 a}$ toward $\mathrm{Na}^{+} ; \mathbf{2} \mathbf{b}$ toward Na^{+}and K^{+}).

Table 1. Proton Chemical Shift Differences [$\Delta \delta=\delta$ (complex - host) $\times 300 \mathrm{MHz}$] between Host and Their Complexes in CDCl_{3}

Complex	polyether ring			$\mathrm{CO}_{2} \mathrm{Me}$	azulene ring			
	$\mathrm{c}^{-}-\mathrm{H}_{1}$	PH_{2}	$\mathrm{OCH}_{2}(\mathrm{ppm})^{\text {b }}$		H-4	H-8	H-6,7	H-5
$2 \mathrm{a} / \mathrm{NaSCN}$	-149	5.0	3.741-3.391	3.3	1.1	2.7	3.3	1.7
KSCN	-60	1.1	3.732-3.360	0.6	0	0.5	0	2.9
1 RbBr	0	0	3.737-3.345	0	0	0.5	0	0
Csi	0.5	0.6	3.739-3.347	0.5	0.5	0.5	0.6	0.54
$2 \mathrm{~b} / \mathrm{LiCl}$	-1.1	2.8	3.704-3.409	0	0	1.7	-0.6	0
NaSCN	a	a	4.146-3.244	17.6	20.3	55.0	44.0, 17.6	24.8
KSSCN	a	a	3.983-3.338	22.0	19.2	26.9	38.6, 16.4	16.0
Rbbr	-1.7	1.7	3.708-3.411	0	0	0	-0.6	0
Ksl	-2.8	1.7	3.710-3.259	0.5	0	1.1	0	0.6

a. All peaks are shifted upfield (Figure 1).
b: The chemical shift of 2 a is $3.737-3.335 ; 2 \mathbf{b}, 3.710-3.411 \mathrm{ppm}$.

X-Ray crystallography of $\mathbf{2 b} \cdot \mathbf{2} \mathbf{H}_{2} \mathrm{O}$ is shown in Figure 2.8 Bond alternation of the azulene ring is smaller in the 7 membered ring than that of the 5 membered ring. The dihedral angle between two azulene planes is 75°, which is smaller than 94° for $3,3^{\prime}$-dimethyl-1,1'-binaphthalene-2,2'-crown-6ether. ${ }^{9}$

(06)

Selective average bond lengths and angles:
C-C of the 7 membered ring, 1.393; C-C of the 5 membered ring, $1.426 ; \mathrm{CH}_{2}-\mathrm{O}, 1.388$; $\mathrm{CH}_{2}-\mathrm{CH}_{2}, 1.437 \AA$. Interior angles: the 7 membered ring, 127.8; the 5 membered ring, 108; $\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}, 116 ; \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}, 110^{\circ}$.

Figure 2. Simplified view of X-ray crystallograpy of $\mathbf{2 b} \cdot \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}$.

The diameter of the cavity formed among oxygen atoms in the polyether ring is estimated to be about 5 \AA. The cavity size and dihydral angle between the two azulene rings appears to be optimal for the complexation of the host toward $\mathrm{Na}^{+}(1.94 \AA)$ and $\mathrm{K}^{+}(2.99 \AA)$ ions. 2a may have a smaller cavity and will have better complexation toward the Na^{+}or Li^{+}ion. Although studies by molecular modelling showed the opposite. The more rigid polyether ring of $\mathbf{2 a}$ causes it to have a larger cavity. The lower flexibility of the cavity is the reason which results in the low complexation of 2a toward alkali cations.

ACKNOWLEDGEMENT

The authors thank the National Science Council of the Republic of China for financial support (NSC 83-0208-M-002--020) and the Japan Academy for partial support of reagents (to T. N.). We also thank Professor Yu Wang of National Taiwan University for X-ray analysis.

REFERENCES AND NOTES

1. a) P. G. Potvin and J.-M. Lehn, "Design of Cation and Anion Receptors, Catalysts and Carriers" in Synthesis of Macrocycles: The Design of Selective Complexing Agent; eds. by R. M. Izatt and J. J. Christensen, Wiley, New York, 1987, pp. 167-239. b) I. O. Sutherland, "Molecule and Cation Recognition by Synthetic Host Molecules" in Crown Compounds: Toward Future Applications, ed. by S. R. Cooper, VCH Publishsres Inc., New York, 1992, pp. 235-260. c) J. F.Stoddart, Synthetic Chiral Crown Ethers. In Topics in Stereochemistry; eds. by E. L. Eliel and S. H. Wilen, Wiley, New York, 1988, 17, pp. 207-288. d) G, W. Gokel and J. E. Trafton, in Cation Binding by Macrocycles, Marcel Dekker, New York, 1990, p. 253.
2. Compound (1) was prepared by oxidative coupling reaction of methyl 2 -hydroxyazulene-1carboxylate with ferric chloride in 40% yield by some modifications of the methods: T. Morita, S. Kosuge, K. Suzuki, and K. Takase, to be published. Methyl 2-hydroxyazulene-1-carboxylate was prepared according to the reported methods: T. Morita and K. Takase, Sci. Rept.Tohoku Univ. 1980,72, 83-90; T. Nozoe, K. Takase, M. Kato, and T. Nogi, Tetrahedron, 1971,27, 6032. Data of 1 : Deep red prisms, $230-231^{\circ} \mathrm{C}$ (decomp.). lr (KBr) $3400,1633,1218 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ nmr ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.04(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 9.03-8.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4,4^{\prime}\right), 7.94(2 \mathrm{H}, \mathrm{d}, J=$ $\left.10.1 \mathrm{~Hz}, \mathrm{H}-8,8^{\prime}\right), 7.52-7.47$ (4H, m, H-5,5',6,6'), 7.35-7.24 (2H, m, H-7,7'), 4.07 ($6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{COOMe}) ;{ }^{13} \mathrm{C} \operatorname{nmr}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,169.2,141.7,139.9,134.4,133.7,132.3$, 129.4, 128.5, 107.7, 99.2, 51.4; EIms $m / z 402\left(\mathrm{M}^{+}, 34\right), 370$ (29), 338 (100), 310 (10), 282 (13); HRms: Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{6} 402.1103$, found 402.1108.
3. J. Buter and R. M. Kellogg, J. Org. Chem., 198 1, 46, 4481.
4. SÁGE Instruments, Syringe Pump Model 314B.
5. 2a : Reddish brown crystals, $\mathrm{mp} 226-227^{\circ} \mathrm{C}$, ir (KBr) $1671,1212,1130,1097,1040 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{nmr}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.45-9.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4,4^{\prime}\right), 7.77\left(2 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}, \mathrm{H}-8,8^{\prime}\right)$,
7.59-7.53 ($\left.\left.4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5,5^{\prime}, 6,6^{\prime}\right), 7.30-7.20(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7,7)^{\prime}\right), 4.37$ ($2 \mathrm{H}, \mathrm{ddd}, J=10.9,7.6$, $3.3 \mathrm{~Hz}, \alpha-\mathrm{H}-1), 3.85(2 \mathrm{H}$, ddd, $J=10.9,4.0,4.0 \mathrm{~Hz}, \alpha-\mathrm{H}-2), 3.99(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{COOMe}), 3.74$ $-3.34\left(12 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.8,165.5,141.9,140.6,135.8$, 134.5, 133.9, 128.9, 127.9, 109.7, 105.2, 72.4, 70.5, 70.2, 70.1, 51.1; EIms $m / z 560\left(\mathrm{M}^{+}\right.$, 100); HRms: Calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{9}, 560.2047$; found, 560.2047 .
$2 \mathbf{b}$: Reddish brown crystals, $\mathrm{mp} 141-142^{\circ} \mathrm{C}$, ir (KBr) $1672,1211,1129,1097,1040 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \mathrm{Nmr}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 9.46-9.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4,4^{\prime}$), $7.74\left(2 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{H}-8,8{ }^{\prime}\right)$, 7.61-7.50 (4H, m, H-5,5',6,6'), 7.27-7.20 (2H, m, H-7,7'), 4.33 ($2 \mathrm{H}, \mathrm{ddd}, J=10.8,7.4$, $-3.3 \mathrm{~Hz}, \alpha-\mathrm{H}-1), 3.85(2 \mathrm{H}, \mathrm{ddd}, J=10.8,4.7,3.3 \mathrm{~Hz}, \alpha-\mathrm{H}-2), 3.98(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{COOMe})$, $3.70-3.43\left(16 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7,165.6,142.1,140.6,135.8$, $134.6,133.8,129.1,128.1,109.5,105.2,72.2,70.5,70.4,70.3,70.1,51.1$; EIms $m / z 604\left(\mathrm{M}^{+}, 100\right)$; HRms: Calcd for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{10}, 604.2309$; found, 604.2311.
6. A. Tajiri, M. Fukuda, M. Hatano, T. Morita, and K. Takase, Angew. Chem., Int. Ed. Engl. 1983, 22, 870.
7. Insight II Program, Version, 2.3 .0 (1993) from Biosym, San Diago, California, USA.
8. Crystal data for $2 \mathrm{~b}: \mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}_{12}, \mathrm{~F} . \mathrm{M} .=640.68$, monoclinic, space group $\mathrm{C} 2 / \mathrm{c}, \mathrm{a}=494$ (3),
$b=20.038$ (4), $c=17.387$ (4) $\AA, \beta=93.835(21)^{\circ}, V=3300.3$ (14) $\AA^{3}, Z=4, D=1.289 \mathrm{~g}$ cm^{-3}, Crystal dimensions $0.08 \times 0.10 \times 0.55 \mathrm{~mm}^{3}$, Data were collected on a Nonius CAD4 diffractometer using Mo-K $\alpha(0.7093 \AA)$ radiation at $298^{\circ} \mathrm{K}$, no. of measured reflections: 2164, no. of observed reflections: 862 with $\mathrm{I}>2 \sigma(\mathrm{I})$, no. of unique reflections: 2164 . The refinement converted at $\mathrm{R}=0.069, \mathrm{Rw}=0.071$. NRCVAX was used as a refinement program.

Bond lengths: C1-C1, 1.478 (13); C1-C2, 1.384(11); C1-C9, 1.413(11); C2-C3, 1.444(11); C2-O1, 1.349(10); C3-C10, 1.397(12); C3-C16, 1.471(12); C4-C5, 1.375(13); C4-C10, 1.384(11); C5-C6, 1.367(14); C6-C7, 1.409(12); С7-C8, 1.362(12); C8-C9, 1.367(11); C9-C10, 1.490(10); C11-C12, $1.508(15)$; C11-O1, $1.372(11) ;$ C12-O2, 1.367(15); C13-C14, 1.497(17); C13-O2, 1.429(12); C14-O3,1.385(12); C15-C15, 1.374(20); C15-O3, 1.432(14); C5-O3, 1.432(14); C16-O4, 1.188(10); C16-O5, 1.322(11); C17-O5, 1.439(12) \AA. Bond angles: $\mathrm{C} 1-\mathrm{Cl}-\mathrm{C} 2,127.8(7)$; $\mathrm{C} 1-\mathrm{Cl}-\mathrm{C} 9,124.2(7)$; C1-C2-C3, $110.5(7)$; C1-C2-O1, 129.5(7); С3-C2-O1, 120.0(7); С2-С3-C10, 107.0(7); С2-C3-C16, 130.2(8); С10-C3-C16, 122.8(7); С5-С4-C10, 129.1(7); С4-С5-С6, 129.8(8); С5-С6-С7, 129.3(8); С6-С7-С8, 127.9(8); С7-С8-C9, 129.7(7); С1-C9-C8, 124.4(7); С1-С9-C10, 107.2(7); С8-C9-C10, 128.4(7); С3-C10-C4, 126.9(7); C3-C10-C9, 107.3(6); C4-C10-C9, 125.8(7); C12-C11-O1, 110.3(8); СІІ-С12-O2, 110.3(9); C14-C13-O2, 107.6(8); С13-C14-O3, 111.2(8); C15-C15-O3, 111.7(9); C3-C16-O4, 126.5(8); C3-C16-O5, 110.4(7); O4-C16-O5, 123.0(8), C2-OI-C11, 118.5(7); C12-O2-C13, 114.4(8); C14-O3-C15, 116.8(7); C16-O5-C17, 111.5(7) ${ }^{\circ}$.
This molecule is conformationally disordered around the $\mathrm{O} 3-\mathrm{C} 15-\mathrm{C} 15-\mathrm{O} 3$ moiety.
9. I. Goldberg, J. Amer. Chem. Soc., 1980, 102, 4106.

